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Abstract. In this paper, we lay the foundation for the study of Lebesgue
integration. We rely on techniques of analysis to develop the fundamentals of

measure theory. We first offer several important definitions and notations that

we utilise throughout. Then we transition to the outer measure of a set before
defining the Lebesgue measure of any set and sigma algebras. Afterwards,

we list and explain several properties of Lebesgue measure that are pivotal

in creating a more generalised characterisation of measurable sets. Next,
we comment on said characterisation before turning to measurable functions,

which are the backbone of Lebesgue integration. Finally, we conclude with a

summary of the utility of the material presented in this paper – namely, we
briefly discuss the connection to Lebesgue integration.
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1. Fundamental Definitions

To really grasp an intuitive understanding of the Lebesgue Measure and some
of its applications, a few fundamental definitions and theorems regarding Real
Analysis need to be established. Additionally, these theorems and definitions will
assist in elucidating the notation that will be employed henceforth.

Definition 1.1. The complement of a set E is denoted by Ec. Since a set is just
a collection of points in a space, its complement is the entire space with all of the
elements of E removed. In the case of E being the entire space, Ec is the empty
set, ∅.

Definition 1.2. The set difference of two sets E and A is given by E − A. This
means take all of the elements shared by E and A and remove them from E.
Symbolically, we may write E −A = E ∩Ac.

Definition 1.3. For a sequence of sets {Ek}∞k=1, lim supEk =
⋂∞
j=1

⋃∞
k=j Ek and

lim inf Ek =
⋃∞
j=1

⋂∞
k=j Ek.

Definition 1.4. For all elements a ∈ A and ε > 0, A is dense in E if there is an
e ∈ E such that 0 < |e− a| < ε.

For example, consider the rational numbers. They are dense in R because there
is some rational number that is arbitrarily close to any number in R.

Definition 1.5. The interior of a set, E◦, is an open set. The set itself is open iff
E = E◦. If E is open, then Ec is closed and vice versa. Both ∅ and Rn are open
and closed. Some sets are neither open nor closed. Additionally, we denote an open
set as G and a closed set as F .

Proposition 1.6. The union of arbitrarily many open sets is open; the intersection
of finitely many open sets is open. Also, the intersection of arbitrarily many closed
sets is closed; the union of finitely many closed sets is closed.

Definition 1.7. We denote the set type Gδ as the intersection of infinitely many
open sets Gk and the set type Fσ as the union of infinitely many closed sets Fk.
Note that neither of these types of sets need to be open or closed.

Definition 1.8. A set E is compact if there is a finite subcover for every open
cover of E. An cover of E is a family of sets that includes E in the union of the
sets in the family. A cover is open if all of the sets in the family are open.

Theorem 1.9 (The Heine-Borel Theorem). A set E is compact in Rn if and only
if it is closed and bounded.

Notation 1.10. The functions presented will be denoted by f = f(x) (or will take
a similar form) and will be real-valued.

With the preliminary definitions and theorems out of the way, we will now begin
an explanation of the Lebesgue Outer Measure.
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2. The Lebesgue Outer Measure and its Properties

In this section we will introduce the concept of the outer measure of a general
subset E of Rn and some of its properties. The general idea behind the Lebesgue
outer measure is that we may use some countable collection of closed intervals, S, in
the dimension in which we are working that cover our general set E to approximate
the outer measure within an arbitrarily small ε. Essentially, what we are calculating
is related to the size of our set. To do this, we consider several closed intervals Ik,
each of which is denoted in set-builder notation by

I = {x : aj ≤ xj ≤ bj , j = 1, ..., n} .
We then compute the volumes of each of the Ik as follows

v(I) =

n∏
j=1

(bj − aj).

By our construction of I, we have a rectangle with side lengths given by bj−aj . To
get the volume we just simply multiply the side lengths together, which is given by
the above notation. Now, let S be a countable collection of these intervals Ik. We
now take the sum of each of the volumes of the individual intervals Ik, expressed
as

σ(S) =
∑
Ik∈S

v(Ik).

Here, σ(S) represents the approximate outer measure of the set E that is covered
by S. We then define the Lebesgue outer measure of E, which we denote as |E|e,
as follows

|E|e = inf σ(S).

We then note that 0 ≤ |E|e ≤ ∞ because volume cannot be less than zero but may
be infinite. Some helpful points are as follows:

(1) the empty set, ∅, has outer measure equal to zero,
(2) the outer measure of a finite interval is its volume (|I|e = v(I)),
(3) to find the outer measure of a single interval, we cover said interval by itself,

and
(4) if, for some Ik ∈ S, aj = −∞ or bj =∞, then Ik has infinite measure.

Several important theorems arise out of this definition of Lebesgue outer measure:

Theorem 2.1 (Monotonicity). If E1 ⊂ E2, then |E1|e ≤ |E2|e.

The intuition here is that because E1 ⊂ E2, any cover of E2 must also be a cover
of E1. So, if E1 is a proper subset of E2, then we obtain the less than inequality.
On the other hand, if E1 = E2 then the Lebesgue outer measures are equal. We
establish monotonicity.

Theorem 2.2 (Subadditivity). If E =
⋃
Ek is a countable union of sets, then

|E|e ≤
∑
|Ek|e.

If we just consider disjoint Ek, then we are able to add up the individual outer
measures of each of the Ek, which equals the outer measure of the set E. On the
other hand, if any of the Ek overlap any number of times, the measures of each
Ek when summed will include the measures of the overlapping regions more than
once. Thus, we must have the inequality to account for this case. We now establish
subadditivity.
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The following theorem allows us to expand our definition of measure from simple
intervals to more generalised open sets.

Theorem 2.3. If E ⊂ Rn, then for some ε > 0, there is an open set G such that
E ⊂ G and |G|e ≤ |E|e + ε. Hence, |E|e = inf |G|e, where the infimum is taken
over all open sets G containing E.

The main idea here is that we may take a collection of intervals that cover the
set E and form our desired open set using these intervals. However, a couple of
things are happening here. The first is that we are saying we can estimate the
outer measure of our set E using a collection of intervals within ε/2 error. We
have defined |E|e to be inf σ(S). In doing this, we are taking the infimum of the
σ(S) across all of the S. If we just let G =

⋃
Ik, then, from the previous theorem,

|G|e ≤
∑
|Ik| = σ(S) ≤ |E|e + ε/2. This is great except that G is no longer open.

So, we must now, for each interval Ik ∈ S, consider their interiors because we desire
Ik to be open. Although we now employ the use of the interiors, these interior may
not be enough to cover our set E. Thus, we need to increase the size of each of the
Ik so that the union of their interiors,

⋃
I◦k , contains E. Yet, we need also adjust

the size of each interval by ε2−k−1. Thus, we now have a new collection of intervals
I ′k with interiors (I ′k)◦, the union of which is the open set G we need.

This theorem is the beginning of a much more generalised characterisation of
the outer measure of some set E, whose result is the foundation for the following
theorem.

Theorem 2.4. If E ⊂ Rn, there exists a set H of type Gδ such that E ⊂ H and
|E|e = |H|e.

This theorem is important because it, along with the aid of Theorem 2.3, establishes
the fact that we may take any generalised set in Rn and contain it within a more
simple set, H of type Gδ, that has the same Lebesgue outer measure.

In the following theorem, we denote a rotation of some interval or set by using
an apostrophe.

Theorem 2.5. For every set E ⊂ Rn, |E|′e = |E|e.

The essential concept of this theorem is that we may take a set defined in some
space with now rotated coordinate axes, rotate the set correspondingly, and retain
the same the Lebesgue outer measure as before the rotation. In the preceding
theorems, our intervals of consideration were based on the standard coordinate
axes. However, we may elect to operate on a different basis, which requires the
use of intervals different than those typically utilised on the standard coordinate
axes. Nevertheless, because measure is independent of of the chosen basis – namely,
the intervals of concern – our measure remains unchanged despite the rotation.
Though the underlying work here is a bit more tedious, it summarises primarily
to the generation of rotated intervals, I ′k, that perform the same functions as the
intervals Ik when calculating the Lebesgue outer measure of E. In other words, we
may take the infimum of the sum of the volumes of these I ′k to get |E|′e.

With the fundamental theorems and understandings of Lebesgue outer measure
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elucidated, we will now transition to defining Lebesgue measure and the definition
and construction of sigma algebras.
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3. The Lebesgue Measure and Sigma Algebras

Definition 3.1. In general, a set is Lebesgue measurable if, for some ε > 0, there
exists and open set G such that E ⊂ G and |G − E|e < ε, where E ⊂ Rn is the
set we desire to measure. If E is measurable, we may then define |E| = |E|e, the
Lebesgue measure. Two important consequences that characterise the Lebesgue
measure are listed below.

(1) All open sets are measurable.
(2) Sets with outer measure 0 are measurable.

Additionally, several properties of the outer measure are applicable to Lebesgue
measure, including monotonicity and subadditivity. While monotonicity is immediate,
subadditivity needs to be proved, which we now perform below.

Theorem 3.2. The union of a countable number of measurable sets is measurable.
In addition, if E =

⋃
Ek, then |E| ≤

∑
|Ek|.

We desire to find an open set G such that |G − E|e < ε. So, the underlying
idea is that, for each k, we may find some open set Gk that contains Ek and
|Gk − Ek|e < ε2−k−1. Let G =

⋃
Gk and observe that G \ E ⊂

⋃
Gk − Ek.

We may then take the outer measure of
⋃

(Gk − Ek) and apply monotonicity of
outer measures. Under the definition of measurability above, we have that E is
measurable. Really, this theorem is similar to the subadditivity proof discussed
in the preceding section using intervals, though here we use several Gk. Thus,
we get an analogous theorem about subadditivity, which applies the definition of
Lebesgue measure – the Lebesgue Measure is equal to the Lebesgue Outer Measure.

A corollary that is derived from this theorem is as follows:

Corollary 3.3. An interval I is measurable and its measure is given as follows:
|I| = v(I), where v(I) is the volume of the interval.

Before we introduce the next theorem, two lemmas need be established. Be
warned, their proofs are lengthy and extensive but the ideas behind them are
straightforward and rely on the theorems from the previous section and the above
corollary.

Lemma 3.4. If {Ik}Nk=1 is a finite collection of non-overlapping intervals, then⋃
Ik is measurable and |

⋃
Ik| =

∑
|Ik|.

The proof makes use of Corollary 3.3, the fact that |Ik| = v(Ik), Theorem
3.2, and the Heine-Borel Theorem (the intervals are compact). Yet, the general
understanding here should be clear: we should be able to take the measures of
any finite number of non-overlapping intervals and add them together to get the
measure of the union of these intervals.

Recall here that d(E1, E2) = inf {|x1 − x2| : x1 ∈ E1, x2 ∈ E2}, where d is the
distance between the two sets.

Lemma 3.5. If d(E1, E2) > 0, then |E1 ∪ E2|e = |E1|e + |E2|e.

Again, the proof is complicated, but we consider a sequence of intervals that
cover the union of the two sets E1 and E2. As long as each diameter of the Ik is
less than the distance between the two sets, we may split the sequence of intervals
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into two separate sequences that cover E1 and E2 separately. In doing this, we
may say that |E1|e + |E2|e ≤

∑
|Ik| ≤ |E1 ∪ E2|e + ε. Yet, we may also say that

|E1 ∪ E2|e ≤ |E1|e + |E2|e, implying that |E1 ∪ E2|e = |E1|e + |E2|e. This almost
gives us the theorem. There is a technical case to consider: the diameter of each
of the Ik may be greater than or equal to d(E1, E2). In this case, we can partition
each of the Ik into finitely many non-overlapping subintervals with diameter less
than the distance between the sets of consideration. We then apply the previous
lemma.

With these lemmata, we are able to introduce the following theorem:

Theorem 3.6. Every closed set F is measurable.

Consider a closed set F that is compact. We can then find some open set G
containing F that is close in measure to |F |e and use the set difference G − F to
conclude that F is measurable. We do this by first noting that the set difference
G − F is open, so it is the union of non-overlapping closed intervals Ik. Then F
is measurable if |G − F |e < ε. Yet, G − F =

⋃
Ik, which, by subadditivity, gives

that |G − F |e ≤
∑
|Ik|. Now, notice that we can write that G = F ∪ (

⋃
Ik).

Hence, for any N , F ∪ (
⋃N
k=1 Ik) ⊂ G. By monotonicity and Lemma 3.4 we have

|F |e + |
⋃N
k=1 Ik| ≤ |G|. Then, by Lemma 3.5, |

⋃N
k=1 Ik| =

∑N
k=1 |Ik|. Thus,∑N

k=1 |Ik| ≤ |G| − |F |e for all N . This is possible because F is compact – that is,
|F |e is finite. However, recall that we chose G such that |G| − |F |e < ε. Thus, for

all N ,
∑N
k=1 |Ik| < ε, which implies that

∑
|Ik| < ε. Therefore, |G − F |e < ε as

desired. However, this only works in the case that F is a compact set. Nevertheless,
we may intersect F with some of closed and bounded ball of radius k, Bk, to get a
compact set, which we may use the above logic to deduce its measurability.

Theorem 3.7. The complement of a measurable set is measurable.

This theorem makes use of the fact that closed sets are measurable. Instead of
approximating the measure of a set E from the outside using open sets Gk, we
may approximate from the inside of Ec by using the complements of Gk, which are
closed. Using the preceding theorem we then have that Ec is measurable.

Theorem 3.8. The intersection of measurable sets is measurable.

This follows nicely from Theorem 3.2 and Theorem 3.7. Observe that
⋂∞
n=1Ek =⋃∞

n=1E
c
k, where Ec is the complement of E. Then we simply have the union of

the complements of the Ek, which we know is measurable because unions and
complements of measurable sets are measurable.

Theorem 3.9. For some measurable E,F ⊂ Rn, E − F is measurable.

This also follows nicely from Theorem 3.7 since E − F = E ∩ F c. We now have
an intersection of two sets, with one of them being a complement. Clearly, this set
difference is measurable.

We now define a σ-algebra as a collection of subsets of the space we are working
in. An example is our frequently used space Rn. Two important properties of σ-
algebras are that each σ-algebra is closed under complement and under unions. In
fact, they are also closed under intersections! The Lebesgue σ-algebra is defined as
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the collection of measurable subsets of Rn. It is important to note that we denote
the smallest σ-algebra that contains all of the open subsets of Rn as the Borel
σ-algebra.

Theorem 3.10. Every Borel set is measurable.

This theorem is very straightforward because the Borel σ-algebra is the smallest
σ-algebra contained in the Lebesgue σ-algebra. Since the Lebesgue σ-algebra itself
is a σ-algebra that contains all of the open intervals of Rn, we have that the Borel
sets are measurable by this containment property.
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4. Properties of the Lebesgue Measure

We now make the transition from the definition of Lebesgue Measure, its important
theorems, and sigma algebras to the properties of Lebesgue Measure. In the
previous sections, we defined a measurable set by approximation from the outside
using open sets. Naturally, the question may arise: is this method of approximation
required? No! In fact, we may approximate from the inside of a set by using closed
sets as the following lemma demonstrates.

Lemma 4.1. A set E ∈ Rn is measurable if and only if, given any ε > 0, there
exists a closed set F ⊂ E such that |E − F |e < ε.

Because the Lebesgue σ-algebra is closed under complement, we are able to take
a set E and deduce its measurability by considering its complement, Ec. Now, Ec is
measurable if and only if there is some open set G where Ec ⊂ G and |G−E|e < ε.
We also know that G exists if and only if there exists some closed F such that
F = Gc – this is true because the complement of an open set is a closed set. Then
F ⊂ E with |E − F |e < ε since G− Ec = E − F .

Theorem 4.2. If {Ek} is a countable collection of disjoint measurable sets, then
|
⋃
k Ek| =

∑
k |Ek|.

Proof. Let ε > 0 and assume each of the Ek are bounded. We are able to use the
previous lemma, for each k, to choose a closed set Fk ⊂ Ek so that |Ek−Fk| < ε2−k.
Let G1 = Ek−Fk and G2 = Fk. Hence, G1∪G2 = Ek and |G1∪G2| ≤ |G1|+ |G2|.
Then |Ek| ≤ |Fk|+ ε2−k. Since we assume the Ek are bounded and disjoint, the Fk
are compact and disjoint (note: the Fk are closed and bounded, hence compact).
By Lemma 3.5, |

⋃m
k=1 Fk| =

∑m
k=1 |Fk|. Then since

⋃m
k=1 Fk ⊂

⋃∞
k=1 Fk ⊂

⋃
k Ek,

it follows that
∑m
k=1 |Fk| ≤ |

⋃
k Ek|. In particular, this is true for every m ≥ 1 and

in the limit. We then obtain |
⋃
k Ek| ≥

∑
k |Fk| ≥

∑
k(|Ek| − ε2−k) =

∑
k |Ek| − ε.

We may then have the reverse inequality by Theorem 3.2. �

Corollary 4.3. If {Ik} is a sequence of non-overlapping intervals, then |
⋃
Ik| =∑

|Ik|.

The idea behind this corollary is that we can consider the interiors, I◦k , of each
of the Ik, which are disjoint. We first have that |

⋃
Ik| ≤

∑
|Ik|. On the other

hand, |
⋃
I◦k | =

∑
|I◦k |, since the I◦k are disjoint. Yet, |

⋃
Ik| ≥ |

⋃
I◦k |. We already

know that
∑
|I◦k | =

∑
|Ik| because |I◦k | = |Ik| as these sets differ by a set that has

zero measure. Hence, |
⋃
Ik| ≥

∑
|Ik|. Since we have shown that both inequalities

are true, we have the equality.

Corollary 4.4. Suppose there are two measurable sets E1 and E2 with E2 ⊂ E1

and |E2| finite. Then |E1 − E2| = |E1| − |E2|.

Proof. Notice that since E2 ⊂ E1 we have (E1 − E2) ∪ E2 = E1. This union is
disjoint, so by Theorem 4.2 we have that |E1−E2|+ |E2| = |E1|. Yet, |E2| is finite,
so |E1 − E2| = |E1| − |E2|. �

Theorem 4.5. Let {Ek}∞k=1 be a collection of measurable sets. Then

(1) If Ek increases to E, then limk→∞ |Ek| = |E|; and
(2) If Ek decreases to E and |Ek| is finite for some k, then limk→∞ |Ek| = |E|.



AN INTUITIVE GUIDE TO LEBESGUE MEASURE 11

In either case, we write E such that it is the union of disjoint measurable sets.
For example, in the first case we write E as

E = E1 ∪ (E2 − E1) ∪ (E3 − E2) ∪ ...
By this construction, we may use Theorem 4.2 and Corollary 4.4 to break apart the
measures as sums and differences. However, note that the the constructions of E
slightly differ in each case but we are able to derive the same result. Nevertheless,
it is crucial that the |Ek| be finite in the second case. Why? Consider a sequence of
sets {Ek}∞k=1 such that |Ek| =∞ for all k. One way to construct such a sequence of
sets would be to consider {(1,∞), (2,∞), (3,∞), ...}. Notice that the intersection
of the first N many of these sets approaches the empty set, which has measure
equal to zero. However, the limk→∞ |Ek| 6= |E| because the measures of the sets
themselves clearly are infinite. Thus, the |Ek| need be finite.

5. Measurable Sets and their Character

We previously employed open sets to approximate the measure of a general set
E. However, Lemma 4.1 shows how we may even use closed sets to approximate
the measure of a set E. Better yet, we found that we could state whether a set was
measurable by being able to find closed or open sets F,G either contained within
E or containing E. The question then arises: are the only ways to characterise
measurable sets by using open and closed sets? The answer is no. There are
other ways in which we may conclude the measurability of a set, and the following
theorems expound such methods.

Theorem 5.1.

(1) E is measurable if and only if E = H − Z, H is of type Gδ, and |Z| = 0.
(2) E is measurable if and only if E = H ∪ Z, H is of type Fσ, and |Z| = 0.

If we can write E in either of these ways, then it is measurable since H and Z
are measurable in either case by the theorems from the former sections. However,
we now need to prove that E being measurable implies that we can find some such
sets H and Z such that E = H − Z or E = H ∪ Z. In the first case, suppose
E is measurable. Then, for each k, we may choose a sequence of sets Gk such
that E ⊂ Gk and |Gk − E| < 1/k. We can then take the intersection of the Gk,
which we will denote as H. Then E is contained in H, and H is of type Gδ. Since
|Gk − E| < 1/k and |H − E| ≤ |Gk − E| for all k, it follows that |H − E| = 0. In
the second case, we need only assume E is measurable and then we know that its
complement, Ec, is measurable. We can then apply the first case to Ec. That is,
write Ec as the set difference of the intersection, for each k, of the Gk and Z, that
is, Ec =

⋂
Gk − Z, where Z is a set of zero measure. Then, assuming |Z| = 0,

E =
⋃
Gck ∪ Z. Let H =

⋃
Gck, which is of type Fσ. We then have the result.

This next theorem, though loosely stated, offers us profound illumination on the
structure of measurable sets.

Theorem 5.2 (Littlewood’s First Principle of Analysis). Any measurable subset
of R is essentially a finite union of non-overlapping intervals.

This next theorem is likely the most important characterisation of measurability
because it allows us to broaden measurability to spaces that may not behave like
Rn.
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Theorem 5.3 (Carathéodory’s Criterion for Measurability). E is measurable if
and only if for every A, |A|e = |A ∩ E|e + |A− E|e.

Make note that in this theorem, A need not be a measurable set. We consider
two cases: |E| <∞ and |E| =∞. In the first case, we assume that E is measurable
and suppose, for some A, that A ⊂ H, where H = (H ∩ E) ∪ (H − E) is of type
Gδ. We may find such an H given A by Theorem 2.4. Then |A|e = |H|. In
choosing H so that |H| = |A|e, we have that |A|e = |H ∩ E| + |H \ E|. We then
know that this is greater than or equal to |A ∩ E|e + |A − E|e by monotonicity.
However, the reverse inequality, |A|e ≤ |A ∩ E|e + |A − E|e, is immediately true
(subadditivity), so we have equality. We now will show that E is measurable given
that |A|e = |A ∩ E|e + |A − E|e for all A ⊂ Rn. This is true if |E|e < ∞ because
we can find another set of type Gδ = H such that E ⊂ H and |E|e = |H|. Write H
as H = E ∪ (H −E). Then |H| = |E|e + |H −E|e as we have the union of disjoint
measurable sets. By our choice of H, we know that |H − E|e = 0. Thus, E must
be measurable because H − E is a set with measure zero. However, what if E has
infinite outer measure? In this case, we construct an increasing, finite sequence of
sets that converge to E. We can then apply the logic from above – namely, the
logic of the finite case – to each of the sets within the sequence. Thus, when we
take the limit, the proof still works.

Corollary 5.4. If E is a measurable subset of A, then |A|e = |E|+ |A− E|e.

This follows directly from the theorem above. Since E ⊂ A, then (A ∩ E) = E.
Also, as long as |E| is finite, then we have that |A|e − |E| = |A− E|e.
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6. Measurable Functions

We now transition from measurable sets to measurable functions. Measurable
functions are necessary for Lebesgue integration and in probability theory where
such functions are at the center of the calculation of probabilities of random variables.
The final theorem presented relates measurable functions to simple functions, which
is crucial in the development of Lebesgue integration.

Definition 6.1. For a set E ∈ Rn, a function f being real-valued on E (−∞ ≤
f(x) ≤ ∞, x ∈ E) is Lebesgue Measurable if, for every a,

{x ∈ E : f(x) > a} = {f > a}
is measurable.

Theorem 6.2. For a real-valued function f that is measurable on a set E, f is
measurable if and only if any of the following

(1) {f ≥ a} is measurable
(2) {f < a} is measurable
(3) {f ≤ a} is measurable

are true for all finite a.

For (1), if we assume that f is a measurable function, we get that {f > a}
is measurable. Since the set in (1) is an infinite intersection of {f > a − 1/k},
then we have that (1) is measurable. The other two of these rely on measurability
being closed under complements. For example, if f is measurable, we know by the
above definition that {f > a} is measurable. Since the complement of {f > a} is
{f ≤ a}, then we know (3) is true. Similarly, {f < a} is measurable since it is the
complement of (1).

Corollary 6.3. Let f be a function defined on a measurable set E. If f is
measurable, then so are {f > −∞}, {f < ∞}, {f = ∞}, {a ≤ f ≤ b}, {f = a},
etc...

Each of these really simplify to taking unions, intersections, and complements of
other known sets. Take {f < ∞}. This is equivalent to

⋃∞
k=1{f < k}. We can do

something similar for the other sets.

For a function f defined on E, we now denote the preimage of a set P as the
function f−1(P ). That is, all of the elements x ∈ E such that f(x) ∈ P .

Theorem 6.4. Let f be a function defined on a measurable set E. If f is measurable,
then for every open set G ⊂ R, f−1(G) is a measurable subset of Rn. Also, f is
measurable if f−1(G) is measurable for all open sets G ⊂ Rn and either {f = ∞}
or {f = −∞}.

Here the idea is that if G is an open set, then it is the union of disjoint open
intervals, (ak, bk). Then the preimage of any of the intervals under f is the set
{ak < f < bk}, which we know to be measurable from the previous corollary.
Hence, the preimage of G under f is just the union of all of the preimages of each
interval that comprises G. That is, f−1(G) =

⋃
f−1((ak, bk)), which is just a union

of measurable sets.

Theorem 6.5. For a dense subset A ⊂ R, f is measurable if, for all a ∈ A, {f > a}
is measurable.
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We can consider a decreasing sequence {ak}∞k=1 in A that converges to a. The
union of the sets {f > ak} is just {f > a}. Clearly, this is measurable.

Theorem 6.6. If f is measurable and g = f almost everywhere (a.e.), then g is
measurable and |{g > a}| = |{f > a}|.

We can construct a set from f and g – specifically, {f 6= g} – that has measure
equal to zero. The union of this set and {g > a} is equal to the the union of this
zero measure set and {f > a}. These new sets have a measure that differ by zero.
Thus, they are essentially {g > a} and {f > a}, respectively. We can then conclude
that g is measurable.

Theorem 6.7. If g is continuous and f is finite a.e. in E, then g(f) is defined
a.e. in E and if f is measurable, then so is g(f).

We just need to show that the composition of the preimages under these functions
is measurable, so this theorem relies on Theorem 6.4. We can consider f−1(g−1(G)) =
{x : g(f(x)) ∈ G} using the definition of a preimage. Since we assume f to be
measurable and finite in E and g−1(G) is open, then we have that f−1(g−1(G)) is
measurable.

Theorem 6.8. If f and g are measurable, then {f > g} is measurable.

Proof. Enumerating the rationals as {Qk}, we have

{f > g} =

∞⋃
k=1

{f > Qk > g} =

∞⋃
k=1

({f > Qk} ∩ {g < Qk}).

We are able to do this because the set of rational numbers is countable and dense.
Since f, g are measurable, we have that {g < Qk}, {f > Qk} are measurable by
Theorem 6.2. Since intersecting these sets preserves measurability, we have the
theorem. �

Theorem 6.9. If f is measurable, then, for any constant c ∈ R, f + c and cf are
measurable.

Proof. Suppose that c ∈ R and f is measurable. Then since f = {f > a}, cf =
{cf > a}. Notice that {cf > a} implies that {f < a/c} for c < 0 or {f > a/c} for
c > 0. If c = 0, then cf = 0, which is measurable. Thus, cf is measurable. For
f + c, we have {f + c < a} = {f < a− c}, where a− c is just some other value in
R. Thus, f + c is measurable. �

Theorem 6.10. If f and g are measurable, then f + g is measurable.

Proof. We need to show that {f + g > a}. However, we know that both f and g
are measurable. Thus, {f + g > a} = {f > a − g}, which is measurable by the
previous two theorems. �

Theorem 6.11. If f and g are measurable, then fg is measurable; f/g is measurable
as long as g 6= 0 a.e.

Proof. We leave the proof of the first part of this theorem – namely, the fact that
fg is measurable – to the reader. For the quotient, first suppose that 1/g, f are
measurable and that g 6= 0. Then f/g = (1/g)f , which is a measurable product of
functions. We can say that 1/g is measurable because {1/g < a} implies any of the
following
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(1) {1/a < g < 0} if a < 0,
(2) {−∞ < g < 0} if a = 0, or
(3) {−∞ < g < 0} ∪ {1/a < g <∞} if a > 0,

which are all measurable sets. �

Theorem 6.12. For a sequence of measurable functions, {fk(x)}∞k=1, then supk fk(x)
and infk f(x) are measurable.

Notice that, for k ≥ 1, {supk fk > a} =
⋃∞
k=1{fk > a}. Clearly, this is

measurable. Yet, infk fk = − supk(−fk), which is a constant multiple of a measurable
function. Thus, infk fk is measurable.

Theorem 6.13. If {fk} is a sequence of measurable functions, then lim supk→∞ fk
and lim infk→∞ fk are measurable. Also, if the limk→∞ fk exists a.e., then it, too,
is measurable.

The first statement comes from the previous theorem because we may define, for
sequences,

lim sup
k→∞

fk = inf
j
{sup fk}k≥j

and

lim inf
k→∞

fk = sup
j
{inf fk}k≥j .

The second statement then comes from the fact that, if the limit exists,

lim
k→∞

fk = lim sup
k→∞

fk.

Theorem 6.14. For a function f , we define f+ = max{f, 0} and f− = −min{f, 0}.
Then, if f is measurable, so are f+, f−.

Proof. Suppose f is measurable. If f+ exists, then it is the sup f , hence measurable.
Similarly, if min{f, 0} exists, then it is the inf f . Thus, f− is measurable since it is
the constant multiple of a measurable function. �

In the next theorem, we begin discussion of simple functions. A simple function
is a function f that only takes on finitely many finite values on the set on which
it is defined. We prefer working with simple functions because they enable us to
work with more complicated functions on a simpler level. This is true since we are
able to approximate any function using simple functions.

Theorem 6.15.

(1) Every f can be written as the limit of a sequence {fk} of simple functions.
(2) If f ≥ 0, then we can choose the sequence of functions such that increase

to f .
(3) If f in either of the above two cases is measurable, then fk, the sequence of

measurable functions, can be chosen so that it is measurable.

For this theorem, we first offer an explanation of (2), we then rationalise how (2)
gives us (1). Finally, we offer reason as to why (3) is true. For f ≥ 0, we partition
its range into special subintervals that to generate a sequence of simple functions
that reside in the domain of f . By the construction of these subintervals, each
simple function in the sequence increases to f . In (1), we may break f into f+ and
f−, each of which are non-negative, and suppose they have increasing sequences of



16 AN INTUITIVE GUIDE TO LEBESGUE MEASURE

functions. The difference of these sequences is a simple function. We are then able
to apply the result from (2) to these sequences of simple functions to get the result.
For (3), suppose f ≥ 0. From (2) we have a sequence of measurable functions.
These simple functions are linear combinations of characteristic functions of the
preimages of the subintervals. Therefore, if f is a measurable function, then the
preimages are measurable sets.

The question arises: what is the utility of all of this theory? As stated previously,
all of this is crucial in Lebesgue integration. The purpose of the material prior to
the introduction of simple functions is to establish the foundations for measurable
functions, which are based on measurable sets. Simple functions allow us to take
any function, break it into simpler functions, and then apply the measurability of
the simple functions to conclude that any continuous function is measurable. We
need this to be able to perform Lebesgue integration – integration that relies on
the partitioning of the y-axis – as opposed to the x-axis in Riemann integration –
to form rectangles to approximate the area under a curve. What makes this form
of integration more difficult is that fact that the inverse image of a function needs
to be measured, which relies on measurability of sets.
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